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PREFACE

Calculus has quietly invaded several areas of biology in the

last few years, reflecting a greater desire for precise explanations

of biological phenomena. Mathematical modeling of rates of dynamfc

processes requires calculus. This module introduces modeling in

biology by reviewing differential calculus using only examples from

life sciences. The problem set should be worked since several ideas

are presented which are not in the text proper. An associated com-

puter program, DIFF, uses graphics to check the user's own calculations

and demonstrate the validity of general solutions. Previous exposure

to calculus is recommended but not required.
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INTRODUCTION

Differential calculus is being used more often in recent ecological

and physiological models as data become more precise and the processes

become better understood. Since most biological systems are dynamic,

their mathematical models must describe rates of change, not just current

values, of the relevant variables. Although most models consider changes

over time, the techniques of calculus depend only on the mathematical

function involved and thus any independent variable may be used, such as

spatial dimensions, organism weight, temperature, etc. As a result, the

implications from a model of one process may be applied to the model of a

different process as long as the mathematical functions involved are the

same.

FUNCTIONS OF ONE VARIABLE

Rates of Change

The simplest graph of a dynamic relationship is a straight line. The

equation for a straight line is

y = mx + b (1)

where y and x are variables, m and b are constants. An example of this

relation is the oxygen uptake by the lobster. The oxygen consumption (y)

depends on the oxygen concentration (x) in the surrounding environment, so

that y is a function of x. A typical graph of this function in shown in

Figure 1.

y

.04

.02

0 1 2

Figure 1. Oxygen consumption.
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The equation for this function is

y(x) = .004x + .016

The number .004 represents the slope of the line; that is, the ratio of

the change in y to the change in x. When x changes by 1 unit, y changes

by .004 units. In this particular application, when the water 02 concen-

tration increases by one m1/1, the lobster 02 consumption increases by

.004 m1 per hour-gm body weight. The slope (m in Equation (1)) then

represents the rate of change of y with x.

When the graph is not a straight line, the function it represents is

more complex than above and the rate of change cannot be expressed so

easily. Note that for each unit change in x in Fig. 1, y changes by .004,

regardless of the value of x. The rate of change is then constant. In the

graph of Fig. 2, the rate of change is not constant. To see this, approxi-

mate Fig. 2 by two connected tangent lines (Fig. 3a) and note that the

slope differs with each line. As the approximation improves (Fig. 3b), it

uses more lines and thus presents more slopes. Using an infinite number

of lines, we would duplicate the curve (in Fig. 2) and have a slope that

changes with each value of x. The slope then depends on x and clearly is

not constant. In fact, one definition of the slope of a curve at a point

is the slope of the tangent line at that point.

Note that the slope is ambiguous at the points where two straight

lines meet (Figure 3a). We say the slope is "undefined" at such "corner"

points.

In general, the rate of change of a function is also a function of x

and possesses its own equation. The rate of change is denoted to
dx

reflect the ratio of the change in y to the change in x. When the graph
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Figure 2. Example of a function with a changing slope.

a. b.

Figure 3. Approximations to curve in Figure 2.

is a straight line, the equation for y is

y(x) = mx + b

and the rate of change is

dx

The rate of change is called the derivative. Its functional form

depends on the equation for y. For example, an empirical relation

between oxygen consumption (Q) and body weight (W) is

Q 3W2



The derivative of this function is

c-19' = (3)(2W) = 6WdW

The graph of Q = 3W2 is given in Fig. 4a. The derivative at W = 1 represents

the slope of the line tangent to the curve at the point'where W = 1, as

shown in Figure 4b. At W = 1, the slope is calculated to be

dQ
dW

= 6(1) = 6

Q

3

2

1

2 3

a. b.

Figure 4. Derivative as the slope of the tangent line.

The number "3" in the formula Q = 3W2, as well as the "2" in the

exponent, are empirically determined and differ with body size and species.

The general formula is

Q = aW
b

The derivative of this power function is

abWb-1
dW

(2)
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Table 1 gives the more common functions and their derivatives,

Table 1. Derivatives of Elementary Functions

dy/dx

x
n

nx
n-1

e
x

e
x

kn x l/x

sin x cos x

cos x -sin x

For a more complete table, see any calculus text, or
any math handbook (see Bibliography).

Composite Functions

When a function is composed of several simple functions its derivative

can be evaluated in stages. In the simple cases where y equals the sum or

product of two functions, f(x), g(x), the rules for differentiation

(finding the derivative) are:

Y(x) = f(x) + g(x)_
'

LIZ
dx dx dx

Y(x) = f(x) g(x), =
df

dx
f
(x )dx + g(x)dx

For example, if y(x) = x2(x-1) + 2x, then

= x2d(x-1) + (x-1)412) 2dx dx dx

= x2(1) + (x-1)(2x) + 2

When y is a function of a function, the chain rule provides the differen-

tiation method:

10
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Ay. Ay. du

dx du dx

For the composite exponential function y = e
2x

, we have

Therefore

u(x) = 2x, y(u) = eu

,)

= eu
du

,

du dx

= 2e
u
= 2e

2x

dx

The Gompertz growth curve is used occasionally to describe the popula-

tion size (N) of some species as a function of time (t), and is given by the

equation

N(t) = ae
-be

-kt

where a,b,k are constants. The derivative dN/dt then represents the rate of

growth of the population. Here the chain rule is applied twice:

N(t) = ae
u(t)

,

dN
= ae

du

u(t) = -be
-kt

Write u(t) as u = -be
v(t)

where v = -kt. Then

dv 4u du dv
v

dt
-k, dt dv dt

-be ( -k)-

dN
-be

- dN du dv aeu(-bev -e)(-k) = abk e e-
kt

dt du dv dt

11
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Higher Derivatives

The derivative dy/dx of a function y(x) is called the first deriva-

tive of y(x). If we write

( =
dx 5

then differentiating g(x) produces

dx
= h(x)

which is called the second derivative of y(x), and is written

d2y

dx
,

Other notation used for the first derivative includes y' and SI, for the

second derivative, y" and Y. Since the second derivative is also a function,

it too can be differentiated to give the third derivative, and so on. The

n
th

derivative is written (there is no general dot notation)

dny

dx
n

[n]

Critical Points

The first and second derivatives can be used to determine three special

points on the graph of the function, namely, the relative maxima, relative

'minima and the inflection points. The relative maximum is easily visualized:

the curve rises, reaches a peak, and then falls. The peak is the relative

maximum. It is relative because the curve may rise even higher in a

different place on the graph. Similarly, the relative minimum constitute:.

12
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a low point on the curve. An inflection point is best illustrated by an

example.

The logistic growth function describ:i.ng population size is

(l+b) -kt
N = N

kt
- N (l+b)(1+be )

1+be
0

where k is a growth coefficient, No is the population size at t = 0 and No(l+b)

represents the carrying capacity of the environment. The growth rate is then

dN
dt

= No(l+b)(-1)(1+be
-kt

)
-2

(be
-kt

)(-k)

= N (l+b)bke-kt(l+be-kt)-2

The coefficient k is always positive. In this example, we restrict b to be

greater than 1.

At a relative maximum, the tangent line is horizontal so the slope is zero.

Then the maximum growth rate occurs when the derivative of the growth rate

equals zero.

d(
ddt

i

dt

or equivalently,

d2N
- 0

dt2

slope at (t ,N1)

c\4

lc...inflection point (t1,N1)

0 t
1

Figure 5. Maximum growth rate at the inflection point.

The second derivative of a functior equals zero at the point of inflection,

where the curvature changes from cclwing upward 1.../ to carving downward /.. ,

or vice versa. Thee the maximum growth rate occurs when the population function

N(t) is at its inflection point (see Fig. 5). Since the slope is decreasing

(leveling off) following tLe inflection point, and increasing before the inflec-

tion point, it is certainly maximal (steepest) at that point. This point can

I3
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also be viewed as the relative maximum on the graph of the growth rate,

dN/dt (see Fig. 6).

dN/dt

dN(t
dt

zero slope

t
1

Figure 6. Growth rate as a function of time.

We now locate this point of maximum growth:

d
2
N

0 -
dt

at (t
1
, N

1
)

0 =
dt o

(l+b)bke
-kt

(l+be
-kt

)
-2

] at (t
1
,N

1
)

-kt, -kt -kt,
0 = N

o
(l+b)bk e (be 1-1)(1+be

-kti
Since all factors are positive except (be -1), then

-kt
1

0 = be -1

Solving for t1 gives

t
1
= (

k
)1n b

and then substituting into the original expression for N,

-k(-1Inb)
N
1
= N

o
(l+b)(1+be

k -1
= No(l+b)/2

this says that the growth rate is highest when the population is one-half

±4
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of the carrying capacity.

FUNCTIONS OF SEVERAL VARIABLES

Partial Derivatives

The models treated thus far involve functions of one variable. Oxygen

uptake is given as a function of just the surrounding oxygen concentration.

The population size depends only on time. A more complicated model, however,

may involve many variables. Growth certainly depends on available food sup-

ply in addition to time. Oxygen consumption also depends on more factors

than ambient oxygen concentration. One such model is discussed by Bayne,

Thompson and Widdows (1973).

The model begins with the equation

dC
a- = aWb (3)

where C is the amount of oxygen consumed up to time t, and a, b and W are

constants. The notation dC/dt demands that we may be able to consider C

only as a function of t. This is not always the case. Bayne, et al.,

studied mussels (Mytilus) with regard to the effects of food and temperature

on oxygen consumption. One of their data sets gives values for the co-

efficients a and b for winter vs. summer at two activity levels:

Table 2. Oxygen consumption for Mytilus edulis

Activity

Parameter Season standard routine

a Winter 1.76 2.66

Summer 1.87 2.b4

b Winter 0.724 0.774

Summer 0.670 0.702

dC*
Comparing (3) with (2) gives

dt
= Q.
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Standard activity represents the resting state. Routine refers to the post-

feeding time period where some filtration (i.e. muscle activity) is occurring.

From table 2, we recognize significant dependence of "a" on the level of

activity and dependence of "b" on both activity and season. Let season and

activity be denoted s and m, respectively. Then, in place of "a" and "b" we

write a(m) and b(s,m) to show the dependence on the variables m and s. Now

C, a and b are dependent variables and W, s, m and t are the independent

variables. We must now write (3) as

DC
-a-t- (4)

The derivative notation is different from that in (3) to indicate more than

one independent variable. This derivative is called a partial derivative

and represents the rate of change of C with time while all other variables

are held constant. Note that by holding all of the independent variables

(except t) constant, we also hold a and b constant. So this partial deriva-

tive is obtained by differentiating the function C with respect to t and

treating all of the remaining independent variables as constants.

As a simple example, consider the funiction

Then

and

y = xt 2

= t2
x

(t held constant)

at- x-2t (x held constant)
Dt

-

1 6

(5)
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A partial derivative is by nature merely one simple relation (of

many) extracted from a complicated function. In (5), when both x and t vary,

the graph of y vs. x vs. t is a three-dimensional surface (figure 7). When

t is held constant, the graph (y vs. x) is a straight line (with slope t
2
);

when x is held constant, the graph (y vs. t) is a parabola, as shown in

Figures 8 and 9. These latter two graphs are much simpler than the surface

of figure 7. Note that the straight line (y vs. x) is the far edge of figure

7a, and the parabola (y vs. t) is the near edge of figure 7c.

t= 1.2

y= 1.44x

x

Figure 8. ay /ax = t2. Figure 9. ay /3t = 2xt.

A more complicated example is the complete expression for (4) . The level

of activity is based on the fraction of the maximal filtration rate. Then

m=0 represents the "standard" state, m=1 gives the "active" state, and

m=.4 is the "routine" state . Consider oxygen consumption during summer.

Then

a(m) = 1.87(m+1)

and (3) becomes

DC
= 1.87(m+i)w('7) kb)

Changes in "b" are not significant so that an average value, .7, can be

18
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used. Since (6) involves four variables, and thus cannot be plotted, we

DC
revert to the notation of (2), i.e., Q = . Then

Q = 1.87(mtl)W (.7) (7)

This last expression is similar in form to (5) and its graph has a similar

shape. Problem 3 discusses (7) in more detail.

Critical Points in Three Dimensions

The extension of a critical point to functions of two variables is quite

natural. A point P = (x0,y0,z0) is a critical point for the function

if

z = f(x,y)

of of

ax ay

at the point P. The classification of the critical point is, however, more

complicated. Since there are three second derivatives, many cases could be

considered:

32f 3(3f/3x) a2f 3(af/ay)
5x2 ax -5172- ay

a2f = 3(af/ay) a(af /ax) a a2f

axOy ax ay ayax

This last "mixed" second derivative can be evaluated in either order only

if the function f(x,y) is continuous in x and y. The functions used in

the examples wf.Ich follow are continuous so that the order of differentia-

tion is arbitrary. Rather than considering all combinations of sign (+20,-)

in the second derivatives, we treat only three, which classify a relative
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maximum, relative minimum, and a saddle point. Define

where

L = f (x ,y )'f (x ,y ) f2 (x ,y )xx o o yy o o xy o o.

32f
, etc.

P is a relative maximum if L > 0 and f
xx

(x
o
,y

o
) < 0.

P is a relative minimum if L > 0 and f
xx

(x
o
,y

o
) 0.

P is a saddle point if L < 0.

When L =O, the situation is "undetermined" since its resolution is beyond

the scope of this module.

An interesting example is the function

z = x3 + y3 - 3xy + 15

which seems to describe some of the properties of water falling across a

rock face (Clow and Urquhart, 1974). Some of these properties are well

known. The water will often dig potholes in the rock, especially if it

falls onto a ledge. The corners and edges of the ledge eventually become

rounded. We would then use a function which drops rapidly, levels off

then drops steeply again. Figure 10 shows a three-dimensional computer

plot of this function, looking across the origin into the positive octant

(x>0, y>0, z>0). The required shape is evident, with the pothole just

beginning to form. In fact, the function does possess a relative minimum

at the point (x, y, z) = (1, 1, 14). This model is discussed further in

problem 6.

The saddle point in the waterfall model is located at the point

(0, 0, 15). The region around the saddle point represents the'front

20
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part of the ledge. It is displayed in the computer-drawn graph of figure

11, expanded vertically to highlight the saddle shape. Some basic features

of derivatives are shown here:

a) The slope changes from point to point.

b) The slope depends on the orientation of the tangent line.

Thus, at a given point, the slope found by 3z/3x may be

different from the slope found using 3z/3y.

c) The slope at a relative maximum or relative minimum is

zero, i.e. horizontal.

Figure 10. Waterfall function. Figure 11. Saddle point of waterfall

21

function.
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PROBLEM SET

1. a. The logistic population growth function satisfies the differential

equation

dx
Ax(N - x)

dt

where x=x(t) is the population size and N is the carrying capacity of the

environment. Use this equation to show that the maximum growth rate

(max dx/dt) occurs at the inflection point x=N/2. Assume A is positive.

(HINT: write the equation with v = dx/dt, and set dv/dx = 0).

b. The "relative growth rate" is defined by

f dx

x dt

.where dx/dt is as given in part (a). Let x be given in "numbers of animals"

and evaluate the units of R. The logistic curve is often used to describe

"crowding effects" including intraspecies competition. Use the equation of

part (a) to determine the value of x which maximizes R, and explain this

result in terms of crowding.

2. Leaves usually have small openings called stomata to allow passage of

gases between their interior and exterior. Through them carbon dioxide

passes in for capture by photosynthesis and the resulting oxygen passes

out. Water vapor also escapes through the stomata, sometimes leading to

dehydration. Thus plants have guard cells around the stomata to regulate

their size. Action of the guard cells varies the shape of stomatal open-

ings from a long narrow slit to nearly a circle. Throughout most of this

variation the opening has approximately the shape of an ellipse with a

constant length perimeter, typically about 35 p.

ti 4
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2.(cont.) A good approximation to the perimeter' f an ellipse is

The area is given by

P = 2Tr(a2+b2)/2

A= Trab

Set P=35 and evaluate the area, A, in terms of just the width, b. Show

that the area reaches a maximum when a=b, i.e., when the stomatal opening

is a circle.

2a

Constant-perimeter ellipses.

3. In the 0
2

consdmption model represented by equation (7), the variable Q

has units of p1 /hr. Write Q in ml/hr and find - for W=1000 mg. Whit are

22the units of What might this derivative represent biologically? That

is, why would a biologist be interested in this derivative?

4. A study of shape chang'es in nemerteans and flatworms (Alexander, 1968)

theorizes that a basement membrane encloses the body and contains fibers

which run in helices around the body. From Figure b, if the length D of

the fiber is fixed, then 2, = Dbos6 and when the shape is cylindrical, the

25
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4.(cont.) circumference and volume are 27r = DsinO, v = 7r29..

a. Worm membrane b. "unrolled"
membrane

a. Express v as a function of 0 (with D a parameter) and show v=0 when

0=0 or e=7/2 radians. What do these two cases mean physically?

b. Find 0 which gives a maximum for v. Prove it is a relative maximum

and not a relative minimum. Note that laboratory dissections show that in

the relaxed worm the fibers run at about 55° to the axis of the body. Why

would the relaxed worm have the maximum volume?

5. Studies of insect flight (Alexander, 1968) use the theory of "forced

vibrations" to explain the muscle action responding to nervous stimuli.

If the "forcing function" is assumed to be

Fsin(27nt), t = time, F = constant,

then the steady amplitude A (magnitude of the vibrations) is given by

A = F[(s-472n2m)2 (2711K) 2]-11

where K = viscous damping coefficient

m = wing mass

n = frequency

s = stiffness of the vibrating medium

Find the frequency (n), called the resonant frequency, which gives the

maximum amplitude.

26
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6. This exercise verifies the location of the relative minimum in the example

..)f "water falling across a rock face". The function is

z= x3 + y3 - 3xy + 15

Find all the critical points and determine which one is the relaLi-e minimum.

7. Heat transfer in soils depends on many factors; among them is the variation

in the soil itself (de Vries, 1975).

Since most of the variation is in the vertical direction, a simple mathema-

tical model is the one dimensional diffusion equation,

aT a -
at az az

)

where we define

T = temperature

t = time

z = vertical space coordinate

C = volumetric heat capacity

X = thermal conductivity

When C and A are uniform in depth and constant in time, we have the

simple diffusion equation:

aT a2T
at a Ti-2.

where a = A/C is called the thermal diffusivity of the soil. The temperature

As
at the surface gives boundary conditions for the model. For sinusoidal

variation of surface temperature, we can write the boundary conditions as

T(t,0) = Ta + eo coswt

T(t,03) = Ta = constant

27
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7.(cont.) Show that the solution to this model is given by the following

function:

with

T(t,z) = Ta + 0 e-z/d cos(wt - z/d)

!4

d = (2a/w)'

Be sure to verify that this function satisfies the diffusion equation and

the boundary conditions.

)
,



ANSWERS TO THE PROBLEM SET

1. a. Find the x which gives max(dx/dt). Differentiate dx/dt with respect

to x, equate to zero and solve for x:

dx `dt

d (dx
) = A(N - 2x)

0 = A(N - 2x)

x = N/2

Since the second derivative is negative, i.e.

d
2 (dx /dt) = -2A < 0 ,

then at x=N/2, dx/dt is maximal.

b. Find dR/dx, set equal to zero, solve for x:

1
R =3i-Lkx(N-x)] = A(N-x)

dR
-,-. -A < 0

dx

So no relative max exists, and the maximum must be at the lower end of the

domain of x: since 0<x<N , then max (R) occurs at x=0. This model then

implies that crowding effects are present whenever any animals exist.

2. 35 = 21.1(a4+b`)/ 2

35
2 a24. b2

(TIT)
2

,
)-b-a = (-72.

352

w9
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2.(cont.) The area A in terms of b is then

Maximize A(b):

I

352 2A = Tr(--7 b
2
)
11
b =

35 0 b4)1
27T 27T'

dA 35 -1

db f(

2b2

b ) 4b3)

52b3

0 = --7- 4b3 ,

352
1.1_U 2= 4

TT

assume b 0 0.

35
2TT since b > 0.

;a = - 13)1/2 , since a > O.

Thus the maximum area occurs when a=b, i.e. a circle.

3. To convert (7) so Q is in ml/hr, we divide by 1000:

Q = 1.87x103(m+1)W7

= 1 87x103W7
3m

= .234 for W = 1000

The units are then ml 0
2

per hour per unit of activity.

4. a. First solve for r(0): 1

r =
D

7r
sin 8

2

2

v = (7F sine)?

DIT 3

v(e)
4

sin2
Otos°

30



4. a. (cont.)

b.

26

v(0) = 0 since sin(0) = 0

v(900) = 0 since cos(900) = 0

dv 3

dO 4r
{2sinecos26 -sin36}

0 = 2sinecos26 -sin36 Assume 6>0

o = 2cos26 -sin26

sin26 = 2cos26

tang = if

6 = 54.740

5. Maximize A by minimizing the denominator:

0 = r rs_472n2,0 2 +(2.Trnr
) = 20-47 2n2m)(...872mn) s72K2n

dn"

0 = -2(ms-472m
2n2) + K2

2MS-K 2
87r2m2n2

2ms-K2
n 87rm

6. First calculate the required partial derivatives:,

az az
= 3x2 - 1J" = 2)72 3x

yax
-'

a2z a2

a = 6x ,

axay 3 ' ay 6Y

Now find the critical point(s) by simultaneously solving

Thus

az

ax ay
= 0 and -ay = 0

3x2-3y=0 3y2-3x=0
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6.(cont.) From the first equation we obtain:

Substitute into the second equation and solve for x:

3(x2)2-3x

3x(x2-1) = 0

Thus x=0, 1 The minimum is said to be at (1,1) .

With x=1 we evaluate y:

y = (1) 2 = 1

To classify this critical point, we evaluate

a2z a2z a2z 2

(-Tc2-) ( a)--cT;7) at (x,y) = (1,1):

(6.1)(6.1)-(-3)2 = 36 - 9 > 0

Since

zza

= 6 > 0 at (x,y) = (1,1)
-57

then (1,1) is indeed a relative minimum.

7. First show the boundary conditions to be satisfied:

T(t,0) = Ta+00e-C" cos(wt-O/d)

= Ta+eo co swt

T(t,co) = Ta + Doe
-co/d

= T
a
+ 0

= T
a

'2

cos(wt-co/d)
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7.(cont'd.) Now show that the diffusion equation is satisfied:

DT

at
-= -0 e

-z d
w sin(wt-z/d)

aT 1 -z/d -z/d 1

ai
= - a- e

o o
e cos(wt-z/d) - e e (- --)sin(wt-z/d)

e e
-z/d

[sin(wt-z/d) - cos(wt-z/d)]

D2T 1 Oo -z/d
-a--2- (- -4-J) --cre [sin(wt-z/d) - cos(wt -z/d)]

1
e
o -z/d

- (-d ) ---e [cos(wt-z/d) + sin(wt-z/d)]
d

20
o -z/d- TIT-e sin(wt-z/d)

Substituting into the diffusion equation:

2
80 -z/d

sin(wt-z/d)-e
o
e
-z/d

w sin(wt-z/d) = a ---2-e

The equation is certainly true when sin(wt-z/d) = 0. Now assume that

sin(wt-z/d)-0 0 and divide both sides by -00e-zid sin(wt-z/d):

w = 2a/d2

Substituting for d, we obtain

w = 2a/[(2a/w)']

= W

Thus the equation is indeed satisfied.

t.;



COMPUTER EXERCISES

Program DIFF is basically a plotting routine where the graph of a function

demonstrates some property or use of derivatives. The program is designed to

motivate the following concepts: the derivative as a slope, the zero slope

at a critical point, partial derivatives, and the distinction between continuous

and discrete rates of change.

The specific user options and program features are detailed in the User's

Guide for Program DIFF. The program is designed for easy conversion to be

compatible with a continuous off-line plotter (such as Calcomp). Thus one

option is setting XSLICE, YSLICE to "slice" and remove part of the three-

dimensional graph to expose a hidden profile. This option is of limited

benefit with a line printer, but is of great advantage with an off-line plotter

for displaying critical points.

In each exercise, the user must input certain parameter values. By

repeating an exercise with different parameter values, the user can gain a

better intuitive understanding of how the behavior of functions and their

derivatives depends on the chosen parameter values.

1. In the example in the text treating oxygen consumptionl(see also problem

3 above), the oxygen consumption (Q) depended on both the activity level (m)

and the dry weight (W):

Q = .00187(m + 1)14.7

where the units of Q are m2,0
2
/hr For the computer exercise, we use the

correspondence

Q + z, m x, W + y

34



so that the equation is

z = .00187(x + 1)y
.7

30

Choose a value for y with 0 < y < 3000 mg and evaluate the first partial

derivative Dz/Dx at that value of y. Now use program DIFF:

1. Choose function 1.

2a. If a line printer is used, obtain the plot and check that the

curvature with increasing x agrees with what your partial derivative

suggests. Is the shape supposed to be a straight line, concave

upward, concave downward?

2b. If an off-line printer is used, set XSLICE = 0 and YSLICE = your

choice of y. Obtain the plot. Does the exposed profile agree with

your partial derivative? Repeat the exercise with XSLICE = 0,

YSLICE = O. Does the graph have the same general shape as Fig. 7

in the text? What is different? Now reverse the roles of x, y:

pick x so that 0 < x < 1, evaluate az/ay at that value, set

YSLICE = 0 and XSLICE = your value for x and obtain your plot.

Does the exposed profile agree with your function for az/ay?

That is, is the shape supposed to be a straight line, circle,

parabola ... ?

2. This exerIcise illustrates how different parameter values can affect the

properties of a function and its critical points. Function 2 is used in

this exercise and is a simple polynomial in two independent variables:

z = (P1) x
2
+ (P2)y

2

First calculate all the partial derivatives needed to locate and classify

a critical point for general values of P1, P2. Now use program DIFF:

1. Choose function 2.
0:1.1 me/
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2a. If a line printer is used, set values for P1, P2 (from -1.0 to 1.0)

and obtain the plot. Locate and classify the critical point for

these parameter values. Now check that the plot does show the same

type of critical point at the same location given by your calculations.

Repeat for several values of. P1, P2 and note the dramatic change

in type of critical point. How does the location change?

2b. If an off-line plotter is used, choose values for P1, P2, XSLICE

and YSLICE and obtain the plot. Repeat the exercise with different

values for XSLICE, YSLICE only, and obtain the plot. Classify the

critical point as described in the text and compare wji-11 the plot.

By repeating the exercise with different slicing values (XSLICE,

YSLICE), you can search for the critical point by observing the

changes in the exposed profile. For example, run the program four

times using the following values:

(XSLICE,YSLICE) = (-2,-2)(-2,-1),(-2,0),(-2,1)

You can also keep YSLICE = -2 and vary XSLICE. Check that the

exposed profile agrees with your first derivative. For example,

if XSLICE = -2, YSLICE = -1, then the sliced edge should represent

az/ax at y = -1.

3. When a beam of rectangular cross-section is cut lengthwise from a log,

its strength can sometimes be well described by the following function:

where

S = k W D2

S = strength of beam

W = width of beam

D = depth of beam

as shown in Figure A, and where k is a constant which depends on the type

of tree used. Assume that the log is circular in cross-section and that the
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beam is cut so each corner reaches the outside of the log, as shown.

Assume k = 0.1.

Figure A. Rectangular beam cut from a log.

a. Find the width and depth of the beam which give the maximum strength.

Assume the radius of the log is r.

b. Now use program DIFF:

1. Choose function 3.

2. Let P2 = radius of the log. Choose P2 so that 0 < P2 5 10.

3. Plot the function.. From the graph with y representing S and x

representing W, estimate the width W which gives the maximum

strength.

4. Now calculate the depth D. Check that your estimates for W,

D agree with your gpneral formula of part a.

4. Animal populations newly introduced into a region have been observed to

increase rapidly in number and soon thereafter to fall drastically (Caughley

1970a,b) as indicated in Figure B. One theory is that the population at

first "senses" an infinite food supply and then reproduces rapidly to the

7



33

point of overgrazing the area. The birth rate remains the same but the

death rate (perhaps of young) dramatically increases until the population

is low enough to match the food supply. The population then increases

more slowly and seems to stabilize. Migration is also involved but is poorly

understood. The second population rise to a "steady-state" suggests some

adaptation or social "learning" by the population concerning their new

environment.

0 Time t

Figure B. Population dynamics of introduced species.

a. Consider the logistic equation written as follows:

N(t) = K(1 + be-rt)-1

where K, b; r are positive constants, and N(0) < K. In an attempt to

describe the behavior in Figure B, one could modify the above logistic

function by allowing r to vary over time, i.e. r = r(t). Can the population

ever exceed K? If not, then this modified logistic function is not a good

model. Answer this for a general r(t) in any fashion: by examining the



34

function N(t) itselfby evaluating the maximum of N(t), etc.

b. An alterhate model is developed if the discreteness of the popula-

:ion is taken into account. The logistic function in part (a) assumes that the

population size, N(t), will change continuously as time changes. In certain

species, populations do not change size smoothly (see Sladen and Bang 1969).

The breeding time is a short period, once a year so that many off-spring are

born at the same time. The population size then increases in large jumps.

This discrete change is not modeled well by differential equations. A closely

related field is the study of "difference equations" (see Goldberg 1958) where

discrete changes are allowed. The derivative of the logistic function satis-

fies the differential equation

dN(t)
- rN(t)

(K -N(t))

dt

From this formulation, we see that the logistic model assumes that the

population is always aware of how far from the carrying capacity is the current

population size and so continuously adjusts for this difference. (Note that

the derivative depends on this erence, K-N(t)). Actually, plentiful

food one season may cause too many births the following season, with a definite

time lag between abundant food and severe overpopulation and with few adjust-

ments in between.

The computer is used here to illustrate this inadequacy of differential

calculus. The derivative above is replaced by a difference:

K-N(t+1) N(t) .-rN(t)i K
N(t))

(t+1) t

This model assumes the population changes only once per time period (e.g. ,

annually) and is unable to adjust in between. Is this more or less realistic

than the original logistic model?
L el
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The computer program for this problem plots the population size (N) as a

function of time (t) for a given set of parameters (constants). You should

note in each plot whether N fluctuates at all, whether the initial drop is

steep, and whether the population size eventually stabilizes at the carrying

capacity (K).

The input parameters are identified as:

P1 = initial size

P2 = growth rate (r)

Eowever, the computer program restricts P1 to [-10,10]. The range of No

(initial population size) is chosen to be [50,250]. Thus we use P1 to repre1

sent, but not equal, the initial size as follows:

N
o

- 150
P1 =

10

The carrying capacity is fixed at K = 500. Investigate the different

kinds of behavior of the solution by using program DIFF:

1. Choose function 4.

2. Choose P1, P2 so that -10 s P1 s 10 and 1 s P2 s 4.

3. Obtain the plot.

Check that the initial size on the graph is correctly represented by your

choice of P1. Repeat the exercise if you wish, but be sure two of your plots

have P1 = -10, P2 = 3.5 and P1 = -10, P2 = 1.5. Can you estimate the value

for P2 above which the oscillations are no longer regular (or periodic).

i.e. May's "chaos" (1978)?

Do you think this "difference" model could be a fairly good description

of the introduced population? How would you include social or genetic

"learning" into the model? That is, once the population size rises and then

falls, what parameters might change in the model so that the next rise would

be more gradual?

40
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5. The reaction (Y) of the body to a dose (X) of drug can be represented by

he function:

Y(-) = X2(P1/2 - P2X/3)

P1 x2 P2 x3

2 3

where P1 and P2 depend on certhin body characteristics and on the maximum dosage

which can be administered. Y indicates the strength of the reaction, measured

in millimeters of mercury if blood pressure is being tested, or perhaps degrees

Celsius if change in body temperature is being measured.

Find the dose that has "maximum sensitivity," i.e. where the rate of

increase of Y is greatest. Is this "critical point" a maximum or minimum for

Y"? What is this point called on the graph for Y?

Now use program DIFF:

1. Choose function 5.

2. Choose Ti, P2 so that 0 s P1 s 5, .1 s P2 S 1.0.

3. Plot the function and calculate the correct value for X at the

"critical point." Check that the graph of Y(X) has the behavior

you predicted at this point.

ANSWERS TO THE COMPUTER EXERCISES

1. 9z/9x = (.00187y
.7
) = constant for given y.

Exposed profile should be a straight line.

9z/3y = (.00187)(x+1)(.7)y-'1

Exposed profile curves upward with decreasing slope.

41
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2. az/Bx = 2(P1)x, Bz/9y = 2(P2)y

B2z/Dx2 = 2(P1), a2ziaxay = 0, a2z/ay2 = 2(P2)

az/Bx = 0 if x = 0

Bz/&y = 0 if y = 0

Thus (x,y) = (0,0) is the only critical point.

To classify the critical point, evaluate:

a2x a2z
4(P1)(P2)

Pick P1 = .6, P2 = 1.0

2z
Then 4(P1)(P2) > 0, -Tc2- = 2(P1) > 0 and the point is a relative minimum.

3. From the diagram, we use the Pythagorean theorem to obtain

(2r)2 = W2 D2

Thus D2 = 4r2 - W2

S = (.1) (4)r2W - (MO

dE
= (.4)r2 - (.3)W2dW

r

D

0 = (.4)r2 - (.3)W'

The critical point is then at W = /4r2/3 = 2r/17.

We have

d2s
-.6W < 0

dW'

so that when W = 2r/1 , S is indeed at a maximum.

The depth is then

D = /4r2 - W2 I

= J(4r2 - 4r2/3

= 2,71TT7 r

42
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4.a. Even assuming r = r(t), N cannot exceed K if N(0) < K. We see this by

writing N as a fraction.

N(t) =
K

1 + be
-r(t)t

Since b > 0, the denominator exceeds 1, and thus

N(t) < K

b. Treat r as r(t) in the difference equation model, with

r(0) = r
o

r(1) = r
o
/2

r(2) = r
o
/3

r(3) = r(2)

or some such scheme to decrease r as time increases.

5. Evaluate the derivative.

Y' = (P1)X - (P2)X2

The "rate of increase" of Y is greatest when Y' is maximal. Find, the

max(Y') by differentiating Yr and setting Y'' = 0.

Y ll
d

d(x r) (P1) - (2)(P2)X

0 = (P1) - (2) (P2)X

X = (P1)/(2(P2))

The value for Y is then

P1
2

I [131 (P1)(P2)] (P1)3
Y -

[2(P2) 2 6(P2) 12(P2)2

This point is an inflecti:.r point on the graph Y versus X.



USER'S GUIDE FOR PROGRAM DIFF

Identification

DIFF - A program which displays properties of derivatives of mathematical
functions

-.-

Authors - Richard Hertzberg, Mark Bailey, Center for Quantitative Science
in Forestry, Fisheries and Wildlife, University of Washington,
Seattle. February 1979.

faltilEt

Program DIFF is the computer supplement to the instructional

module "Calculus-Differentiation," by Richard Hertzberg, which reviews

the basic principles and uses of differential calculus, with special

emphasis on ecological and physiological applications. The computer

prram displays graphs of selected functions so that certain derivatives

are visible. Most plots serve as checks to the user's own calculations.

Operation

The user controls program DIFF through certain input variables.

The principal one, NFC, selects the function to be displayed and also

enables or disables other Inputs listed in the INPUT TABLE below. Other

inputs control the parameters in a function, the portions of a function

to be displayed, the number of plots, and the structure of the plots

themselves.

Setting NFC = 1 selects the function

F(x,y) = 0.00187(x 1)Y
0.7

and disables the input variables Pi, P2, and NPLOTS. The user may alter
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the variables XSLICE and YSLICE which act as "slicing" variables that cut

through the z axis of the function along certain planes in order to reveal

hidden profiles. The slicing effect merely sets the z values of the

function to ZMIN (the smallest z value in the plot, which is usually

displayed as a blank) whenever x < XSLICE and y < YSLICE.

Setting NFC = 2 selects the function

I I

F(x,y) = p
1
x
2

P
2
Y
2

This option enables all of the inputs listed in the INPUT TABLE. The

parameters of the function, pl and p2, are represented by the arrays P1

and P2 which can hold up to six different sets of values and generate up

to six different plots, where the number of plots is controlled by NPLOTS.

For example, if

P1 = 1, 2, 3, 4, 5, 6,

P2 = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,

NPLOTS = 4 ,

then DIFF would produce four plots as follows:

plot 1: 1x
2

+ 0.1y
2

plot 2: 2x
2
+ 0.2y

2

plot 3: 3x2 + 0.3y2

plot 4: 4x
2
+ 0.4y

2

Also, by repeating NFC = 2 with different values for XSLICE and YSLICE,

the user can "search" for three-dimensional 'ritical points by observing

various function profiles.

15
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Setting NFC = 3 selects the function

2

F(x) = 0.1x(4p2 - x2)

which can be written as

F(x) = 0.11D (x)

in terms of the notation used in computer exercise no. 3. This option

disables the input variables XSLICE, YSLICE, NPLOTS, P1 and the last five

elements of P2. P2(1) represents the function parameter p2.

Setting NFC = 4 selects the function

F(Y) = p2y(1-y/500) + y.

This function represents the step-wise solution to the difference equation

Yk+1 = p2yk(1-yk/500) + yk , where yk = y(xk) ,

which is the discrete form of the logistic differential equation

dy/dx = p2y(1-y/500) ,

as given in computer exercise no. 4. This initial value for y (y(0))

is determined by the function

y(0) = 10.0 pl + 150.0 .

This option disables the input variables XSLICE, YSLICE, NPLOTS, and

the last five elements of P1 and P2. P1(1) represents the parameter pl

in the initial value equation, and P2(1) represents the function parameter

132'
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Setting NFC = 5 selects the function

F(x) = (p
1
/2)x

2
- (p

2
/3)x

3
,

This option disables the input variables XSLICE, YSLICE, NPLOTS, and the

last five ...aements of the arrays P1 and P2, The function parameters

p
1
and p

2
are represented by P1(1) and P2(1),

I

i

el 7
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Program Organization

The program is organized according to the following flow chart:

Output the
appropriate
error messages.

NODFLT = .T. ?

4/ No

Yes

Read default values for
all parameters from the
built in default file.

Read in the user-supplied
parameter values.

< FINIS = .T. .

No

Yes

Check for errors in
the user-supplied input.

Yes<
Input errors found ?

I No

Calculate all the x,y,z points
for the chosen function. All z
values are set to ZMIN for all
x < XSLICE, y < YSLICE

Terminate

program.

LWrite out the x,y,z coordinates
for all points onto the plot file.

Call the plotting subroutine
PRNT3D which plots the output.

Note: For
NFC=2, this
sequence is
repeated NPLOTS
number of timer.
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All input is handled by the format free input package (Gales and

Anderson, 1978) which permits a user to assign values to variables by a

name=value" convention. Not all variables need be explicitly assigned

by the user, however, as unassigned variables automatically assume default

values. The input consists of any number of data sets, each of which is

terminated by a dollar sign ($). Each data set generates a separate

printer plot.

The input for DIFF is divided into three classes: (a) variables

having mathematical significance: NFC, XSLICE, YSLICE, P1, P2 and NPLOTS;

(b) variables which control certain program operations, such as program

termination or the handling of default input: IPRINT, ECHO, NODFLT, and

FINIS; and (c) variables which control the printer plots (default values

are in parentheses): XMIN (0), XMAX (0), YMIN (0), YMAX (0), ZMIN (0),

ZMAX (0), XRICH (0), YRICH (0), DFAULT (0), OVPRNT (.F.), AVE (.T.),'

INT2D (.F.), NX (60), NY (45), and ZMAP (0,1,2,3,4,5,6,7,8,9). The variables

in the first two classes are explained in the following INPUT TABLE, whereas

the printer plot variables are explained in the user's guide for PRNT3D

(Gales, 1978). The user normally may ignore the PRNT3D variables since

DIFF controls them internally. However, if he chooses to change any of

them, he should do so with great care. In particular, the variables

XRICH and YRICH, if made too small, will cause DIFF to generate a very

large number of enrichment points, and consume far too much computer time.

1 it
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INPUT TABLE

Name

Type and
Dimensions Range Limits Description

NFC

P1
P2

XSLICE
YSLICE

NPLOTS

'PRINZ

ECHO

Integer

Real (6)
Real (6)

Real
Real

Integer

Logical

Logical

1,5

-10,10
-10,10

XMIN,XMAX
YMIN,YMAX

1,6

.F., .T.

.F., .T.

Identifies function to be
plotted.
Default value: NFC = 1

Function parameters. Their
physical significance and,
to some extent, their range
limits, depend on the
particular function
specified.
Default values:
P1 = 1,1,1,1,1,1
P2 = 1,1,1,1,1,1

Deletes part of the function
by setting Z=ZMIN for
x < XSLICE, y < 'SLICE.
Default values:
XSLICE = 0
YSLICE = 0

The number of plots to be
drawn. NPLOTS is used only
when NFC=2.
Default value: NPLOTS = 1

A logical value which
causes the current values
for all input variables
(default as well as current
user input) to be printed.
Default value:
IPRINT = .F.

A logical value which
causes the user's input to
be echoed if ECHO=.T., or
suppresses echoing if
ECHO=.F.
Default value is:
ECHO=.T.



Input Table (continued)

Name
Type and

Dimensions Range Limits Description

NODFLT Logical .F., .T. A logical value which
suppresses the input of
default values if
NODFLT=.T.
Default value:
NODFLT = .F.

FINIS Logical .F., .T. A logical value which causes
program termination if and
only if FINIS=.T.
Default value:
FINIS=.F.

Note: XMIN, XMAX, YMIN, YMAX determine the range of points to be
plotted and are set internally for each function.

51

1



-47--

The last four variables deserve special mention.

1. The logical variable IPRINT controls the output of all input variables

which are currently in effect (default values as well as those specified

in the current input set). Setting IPRINT=TRUE (or T or .T.) displays

the input variables; setting IPRINT=FALSE (or F or .F.) suppresses the

display.

2. The logical variable ECHO controls the echoing of the input cards.

Setting ECHO=TRUE causes the subsequent input set to the echoed;

setting ECHO=FALSE suppresses the echo for the subsequent input set.

3. The logical variable NODFLT can be used to inhibit the automatic

assignment of default values to input variables. If NODFLT is set

TRUE in the current input set, then the current input set is assigned

default values as usual, but all subsequent input sets merely

accumulate more input values. In effect, the input values which exist

after th i-th input set is read, become the default values for the

(i+1)-th input set. The standard default values may then be restored

by setting NODFLT=FALSE, but, again, the effects of this change are

delayed until the next input set is read. To a limited extend, NODFLT

permits a user to set up his own default values and can be very useful

for executing a number of input sets which differ only in a few para-

meters. Consider the following example in which a user wishes to

slice the same function by using several different values for XSLICE

and YSLICE:

/INPUT SET 1: THE FOLLOWING VALUES BECOME THE DE FACTO/

/DEFAULTS FOR ALL SUBSEQUENT INPUT SETS:

NODFLT = TRUE, NFC = 2, P1 = .1, .4, .5, 2.3,

52
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P2 = 2.2, 2.6, 2.5, 2.8, NPLOTS = 4, XSLICE = 0, YSLICE = 0, $

/INPUT SET 2: SLICE THE ABOVE FUNCTION/

XSLICE = -1, YSLICE = 0, $

/INPUT SET 3: SLICE IT ANOTHER WAY/

XSLICE = 0, YSLICE = -1, $

/INPUT SET 4: SLICE IT YET ANOTHER WAY/

XSLICE = 1.2, ?SLICE = -1.2, $

/INPUT SET 5: NOW STOP/

FINIS = TRUE, $

4. The logical variable FINIS controls program termination. The user

should add the card:

FINIS = TRUE, $

as the very last input set. If, FINIS is not set, the program will

terminate abnormally.

Output

DIFF produces sets of plots, via subroutine PRNT3D, which display

function values. Each plot contains a title, legend, x and y axis

annotation, and printer plot lines or surfaces. The title displays some

of the values, and ranges of values, for the variables used to generate

the plot.

The plot legend, in conjunction with the numbers along the x and y

axes, allows users to interpret the plot numerically. The x and y axis

numbers are of the form ±N.NNN and differ from their true values by powers

of 10 which are specified by the scale factors in the legend. For example,

the.first line of the plot legend for RUN 3 reads.

ti3
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SCALE FACTORS = X-AXIS:E+00 Y-AXIS:E-01 Z-AXIS:E+00

hence the point, indicated by a "1" character near the top right of the plot,

is near (x=1.246, y=3.100) = (x=1.246x10°, y=3.100x10-1) = (x=1.246, y=0.31).

The remaining two lines of the legend specify the number of points mapped

to each z-level (-9 means > 99).

Restrictions

The input values are restricted to the ranges given in the INPUT

TABLE. Due to the physical interpretation of the function parameters,

further restrictions are indicated in the description of each computer

exercise.

Error Messages

Three types of errors may occur in program execution:

1. Syntax errors in the user's input.

2. Parameter range exceeded.

3. Plot parameter errors.

Input errors 1 and 2 generate an appropriate error message, the calculations

are skipped, and the next input set is read. For type 3 errors, the

program suppresses the plot, outputs the error message and reads the next

input set. If the plot file is empty, an error message is printed but the

plot proceeds. Type 1 and type 3 error messages are listed in the user's

guides for subroutines FFORM and PRNT3D.

' Sample Runs

The control cards, input cards, and line printer output for five

sample runs appear on the next few pages.
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DIFEDCM70000,T10,132.
ACCOUNT0*******/*******.
COMMENT.
commENT.**********************************#*****
COMMENT.* THE ABOVE CARDS IDENTIFY THi- JCR
COMMENT.* (DUE), SPECIFY THE CENTRAL MFMOPY *

COMMENT.* RECUIREMEN(S (70000 OCTAL), THE
COMMENT.* CENTRAL PROCESSOR TIME (10 SECONDS) *

COMMENT.* THE JOB PRIORITY (P2). AND THE
COMMENT.* ACCOUNT NUMBER AND PASSWORD
commENT.****************************************
COMMENT.
ATTACH,BD1FE,IDBD1FF.
ATTACH1 BPR3D,IDRPR37).
ATTACH,BEF,IDBFF.
COMMENT.
commENT.****************************************
COMMENT.* THE ABOVE CARDS ATTACH THE MAIN
COMMENT.* PRI7GRAM (43IPF), AN: THE SUPPGRI-
COMMENT.* ROUTINES PRINT3D (FR1D) AND THE
COMMENT.* FREE ECRM INPUT ROUTINE (3FF). THEY *

COMMENT.* ARE All IN !UNARY
COMMENT.************ve**************************
COMMENT.
LOAD.BOIFF,E.PR33.04P.
EXECUTE,DIFF.
COMMENT.
nmmcNT.****************************************
COMMENT.* THE ABOVE CARDS LOAD THE ROUTINES
COMMENT.* INTO CENTP4L MEMORY AND PASS CONTRCL
CIMMENT.* TO DIFF FO4 EXPCUTIN
com:.1:NT.*4**************************************

COMMENT.
*F.C.R
/******************4***********************************************/
/ /
/ THE FOLL041NG DcFAULT VALUES jr4P USED
/ /
/ NIC=1, NPLOTS1,
/ P1 1.'1.'1.'1.'1. .1., P2 1.,1.,1.,1.,1.,1., /

/ XSLICE 0., YSLICti 0.,
/ ECHC-.T., NODFLT.F., FINIS.F.,
/ NXebO, NY -4;+
/ X4IN0.0, XMAY=0.0. YMIN0.0, YMAX0.0. ZMIND.0, 7MAY.0.;,
/ )i:10-10.0, YRICH0.0, DRAULT*0.00
/ OVF'RNT se, AVE .1., INT2D .1., IPRINT .r
/ /
/ /
/*******g********4***as*********PUN 1**P****************00***********/
/ /

NFC1, S
/ /
/ /
/* * * * * * * * * * ** * * *** * ** * * * * * * * * * * * LIN 2 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /

/ /
NFC2, S

/

/*******************************RuN 3********** *********************/
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NFC3,

/ /

/* ************4 ****************PUN 4********************************/
/ /

NFC4, P1 -10, 1.2t S
/ /

/*******************************Rum 5********************************/

NFC5 XRI CH.O. 05 YRI CHC .005, 1PR INT T. S

/ /
/ /
/******************** ************sTop********************************/

FINIS. T S

/*4:******************************************************************/
*E OP



OGRAM DIFF READY FOR INPUT.
/******************************************************************ii*/
/ /

/ THE FOLLOWING DEFAULT VALUES ARE USED /

/ /

/ NFCal, NPLETSI, /

/ P1 ig 1.,1.$1.,1.,1.,1., P2 1.,1.,1.,1.,1.01., /

/ XSLICE = O., YSLICE = 0., /

/ ECHOs.T., NOOFLT=.F., FINI$=.r., /

/ NX6G, NY.45, ZMAPOPIP2,3,4,5,f,7,P,q, /

/ XMIN0.0, XMAX.0.0, YMIN=0.0, YMAY0.C, ZMIN0.0, IMAY*0.0, /

/ XRICHs0.0, YRICH0.0, DFAULT0.0, /

/ OVPRNT .F., AVE = .T., INT2D .F., IPRINT .F. /

/ /

/ /

/*******************************PuN 1#4.0*****************************/
/ /

NFC161, S
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OXYGEN CONSUMPTIO4
FOR F = 0.00187 * (Y+1.0) * Y * *C.7

XSLICE 0 YSLICE 0

0 .153 .322 .492 .661
X

6 6

6 6

5 6

5 5

5 5

5 5

5 c.
4 5

4 4

4 4

4 4
3 4

3 3

3 3

3 3

2 2

2 2

2 2

1 1

1 1

1 1

X
3.000Y

X

13 3 4 4

I

13 3 3 4
I

2.65gY3 3 3 4
I

13 3 3 3

I

13 3 3 3
2.316Y

13 3 3 3
I

13 3 3 3
I

1.977Y2 3 3 3
I

1 2 2 3 3
I

12 ? 2 2
1.636Y

12 2 2 2
12 2 2 2
I

12 2 2 2
1.2';5Y

12 2 2 2
I

11 1 2 2
I

.955Y1 1 1 1

I

I1 1 1 1

I

I1 1 1 1

.614Y
Il 1 1 1

1

I 1 1

I

.273Y
I

I

I

OY
x X

X X

4 f
. 4 5 5 5 5 5 6 F

4 4 4 4 5 5 5 5 5 5

4 4 4 4 4 5 5 5 5 5

4 4 4 4 4 4 5 5 5 c,

3 4 4 4 4 4 4 5 ,
d 5

3 3 4 4 4 4 4 4 5 C
.

3 3 3 4 4 4 4 4 4 4

3 3 3 3 4 4 4 4 4 4

3 3 3 3 3 -I 4 4 4 4

3 3 3 3 3 3 3 4 4 4

2 3 3 3 3 3 3 3 3 4
2 2 3 3 3 3 3 3 3 3

7, 2 ? ? 3 3 3 2 3 1

2 2 ? 2 2 2 3 3 3 3

2 2 2 2 2 2 2 2 ? 1

2 ? 2 2 2 2 2 2 2 2

1 1 1 2 ? 2 2 2 2 2

1 I 1 1 J 1 1 2 2 2

1 I 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1

3 .153 .322 3132 . 61
ACTIVITY LEVEL

x

ALE F4CTCRS xAYIS: Es00 YAXIS: 10-,3 ZAXIS:

.F31
X

1.000
X

6 6 7 7

6 f 6 7

6 6 6 6

6 6 6 6

5 6 6 6

g g 5 A

c 5. g. 5

5 5 5

4 5 5
c

4 4 4 5

4 4 4 4
4 4 4 4

3 3 4 4

3 3 3 3

3 3 3 3

3 3 3 1

? 2 2 2

2 2 ?

2 2 2 2

1 1 1 1

1 1 1 1

Y Y

.P31 1.C. OC

E+0.:1
74= 0(-9), .133(1:9), .'67(65), .400(), .513(77)
--Z90 .6,67(51), .H01(24), .433( 3), 1.0b7( 0), 1.2'n( '))



iiDGRAti --,DIFF- READY FOR INPUT
/ ./
/ /
/*******************************puN 2********************************/
/ /

NFC12, S

g-9

511
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XSLICE
P1

PITT PFAK, OP PASS CR
FOR F P1 *X**2 P?*Y**?
2.0000 YSLICE
1.0000 P2

2.0000
1.0000

2.000 1.390 .712 .10(34 .644 1.322 2.000
X

2.000Y
X X X Y Y

18 7 6 6 5 5 4 4 4 4 4 4 4 4 4 5 5 6 6 7
I

17 7 6 5 4 4 4 3 3 3 3 3 3 1 4 4 4 5 6 7
I

1.545Y7 6 5 4 4 3 3 3 2 2 2 2 2 3 3 3 4 4 5 6
I

16 5 5 4 3 3 2 2 2 2 2 2 2 2 2 3 3 4 m
, c

I

16 5 4 3 3 2 2 2 1 1 1 1 1 ? 2 2 3 3 4 5

1.091Y
15 4 4 3 2 2 1 1 1 1 1 1 1 1 1 2 2 1 4 4
1

15 4 3 3 2 1 1 1 1 1 1 2 3 3 4
I

.636Y4 4 3 2 2 1 1 1 1 2 7 3 4

I

14 3 3 2 1 1 1 1 2 3 3
I

14 3 2 2 1 1 1 1 2 2 3
.182Y

14 3 2 2 1 1 1 1 2 2 3
14 3 2 2 1 1 1 1 7 2 m

I

14 3 2 2 1 1 1 1 ? 2 3
.273Y

14 3 3 2 1 1 1 1 2 3 .a.

I

14 4 3 2 1
, 1 1 1 1 1 2 3 4

I

.727Y5 4 3 2 2 1 1 1 1 1 1 2 2 3 4
I

15 4 3 3 2 2 1 1 1 1 1 1 1 1 2 2 3 3 4
I

15 5 4 3 3 2 2 1 1 1 1 1 1 1 2 2 3 3 4 c

1.182Y
16 k

, 4 4 3 7
2 2 2 1 1 1 2 2 2 2 3 4 4 5

I

16 6 c 4 4 3 3 ? 2 ? 2 2 2 2 3 3 4 4 5 A

I

1.636Y7 6 5 5 4 4 3 3 3 3 3 3 3 3 3 4 4 r
. 5 6

I

18 7 6 5 c
4 4 4 3 3 3 3 3 4- 4 4 5 6 7

I

2.000Y9 e 7 6 6 5 5 4 4 4 4 4 4 4. 5 5 6 6 7 P
X X X X X X Y.

2.000 1.39U .712

CALF FACTOPS XAx1S1 E+00

.034

YAYIS: a+00

.644 1.32?

E +O

2 0C.0

.002(-9), .991(7F:), 1.779(79), 2.668(77), 3.57(72)
5Z9 4.445(37), 5.314(22), 6.273(11), 7.111( 4), F.:100( 1)



-.4 0 G R A M -0 I F F - READY FOR INPUT

/ /
/ /
/*******************************RuN 3********************************/
/ /

NFC3, S
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STRF4GTH OF WOOD BEAM
FOR 1(X,D) 0.1*X * D(X)**2

P1 1.00-00 P2 1.0000

x
.229 .463 .737 .992 1046 1.50C

100Y3.
X X X X

1 1
X X

I 1
2.748Y 1

I 1

I

I

2.395Y 1

I

I

I 1

I

2.043Y
I 1

I

1.691Y 1

1.339Y
I

1

I

I

.966Y
I 1

I

I

I

.534Y

I

I

I

.282Y 1

I

I

1
0Y1

X
o

X
.22; .4;3 .737 .992 1.244 1.0C

WIl'ITH Cr EAv

CALE FACTOPS XAYIS, E+00
0Z4= 0(-9), 1.000(20),
79,5 5.000( 0), 6.003( 0),

YAXIS! E-01 7AXIS! E+00
P.000( f:), 3.000( 0), 4.00n(
7.D 0( 0), b.000( 0), 9.03(

0)
o)



,:RDGRA14 -DIFF- READY FOP INPUT
/

/ /
/************************4 ******RuN 4********************************/

NFO4, Pla-10, P21.2, S
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LOGISTIC ORO4TH - DIFFERENCE EOUATION

FOP DY a ( P2*Y*(1.-Y/500.) )*DX
P1 -10.0000 P2 1.2000

0 .305 .644 .983 1.1'2 1.561 2.000
x X x X

7.000Y
I

I

I

I
6.207Y

I

I

I

5.409Y
I

11
1 1 111111 11111111111111111111111111 :111111
I 11

4.6141 1

I

I a

I a

3.818Y 1

I a
I a

P I 1

0 I 1

P 3.023Y
1

1

A I 1

1

I 2.227Y a

1

I 1

1 1

1 1.432Y 1

1

I 1

I

I 1

.635Y 1
I1
1

I

OY
X X X x X X

0 .305 .644 .063 1.322 1.6E1 2.0CC
TIMF. IN YFAPS

SCALE FACTCRS X -AXIS: i:+01 Y-LXIS1 E4C2 7-AXIS: F+00
ZO-Z40 0(-91, 1.0O3(69), 2.00( 0), 3.000( 0), 4.00( 0)
27-7.90 5.000( 0), 6.000( 0), 7.030( 0), 8.000( 0), 9.000( 0)



tiGRAM' DIFF READY FOR INPUT

/

/*******************************RUN 5********************************/

NFC*51 XRICH0.05, YRICH0.00t.s !PRINT .T., S



RENT VALUES FOR ALL INPUT VARIABLES,

TS 0

CE a
cF

S
LT

si

5,
10

.1000000E+010

.1000000E+010

.1000000E+010

.1000000E+010
0 ,
0 ,

Tp
F,
'F s..

60,
45,
0,
its
By

0 0

.1000000E+01p

.1000000E+010

.1000000E+01p

.1000000E+01,

1,
5,
9s

.1000000E+010

.1000000E+01p

2,
6,

.1000000E+01,

.1000000E+01,

30
7,

.1500000E+01,
0 p

2000000E+000
0 ,

F', 49000000E+010
: ,-,;5000000E-010

4,'iF*:k=745000000E-02,
110.p,,' ' 0 1,

,1T.'.

.0=4

f=r

'4-47

0

eo



2.000Y
I
I
I
I

1.773Y
I

I
1
I

1.545Y
I
I
1

1

1.319Y
1

I

1
1

1.091Y
I

M I
I 1

T I 1

A .864Y 1

I 1

L. I 1

L I 1

1 I 1

C .536Y 1

I 1

P I 1

E 1 1

BODY RESPONSE TO F1XEDORUG DOSE
FOR Y(X) 0 (P1/2)*(X002) -....,(P2/3)*(X4,43)
P1 1.0000 7" P2 1.0000

0 .229 .483 .737 .992 1.746 1.500
X x x x x x x

S I 1

P .409Y 1

0 I 1

N I 1

S I 1

i 1 1

.182Y 1

I 1

I 1

1 11
OYU

X X x

0 .229 .493

SCALE FACTORS . X -AXIS: E+00
0(-9), 1.000(60),

L5-21 5.000( 0), 6.000( 0),

1
1

1

1

1

1

1
1

1

1

1

1

1

1

1

Y

.737
CR(JG DOSAGE

Y-AXIS: E-01
2.000( 0),
7.000( 0),

1
1 11 1

1
1

X

.932

7-AXIS:
3.000( 0),
8.000( 0),

1

1
]
1

j
1

1

1
1

1

1
a

1
I
1,

1

1

1

X

1.246

E+00
4.000(
9.000(

1
1
1

1

1

0)
0)

x

I.5CC



/V./********************************sTops*******************************// /
FINI S .T ip $

RAM - 'DIFF TERMINATED
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